
sbpy tutorial
Michael S. P. Kelley
LSST SSSC Sprint / 2022 June 6 UTC

Getting started

Getting started 0

sbpy works with Linux and MacOS.

This tutorial includes instructions to setup a clean Python environment with pip.

I am not familiar with conda, but sbpy is available for it. You are free to use a conda
environment at your discretion: https://anaconda.org/conda-forge/sbpy

(A conda environment has the benefit of easy installation of pyoorb.)

Alternatively, one can skip Getting Started section and use a RubinSim v0.9 kernel on
the the SSSC JupyterHub.

https://anaconda.org/conda-forge/sbpy

Getting started 1

Create a new (clean) Python environment, activate the environment, and upgrade a few key packages:

$ cd sbpy/tutorial/june2022

$ python3 -m venv .venv --prompt=sbpy-tutorial

$ source .venv/bin/activate

$ pip install -U pip setuptools wheel

Install JupyterLab with matplotlib widgets:

$ pip install jupyterlab ipympl

Install sbpy with optional dependencies for a feature-rich experience:

$ pip install sbpy[all]

https://sbpy.readthedocs.io/en/stable/install.html

https://sbpy.readthedocs.io/en/stable/install.html

Getting started 2 (optional)

Install openorb with Python extensions (pyoorb).

openorb is not pip installable, but for this tutorial we can use one built for sbpy's testing
environment:

$ pip install git+https://github.com/mkelley/pyoorb-experiment.git@sbpy-testing#egg=pyoorb

- It requires gfortran.
- This package is carefully designed for sbpy testing, so it may not work for you.
- It also has a limited DE430 planetary ephemeris file only covering 1990 to 2030.

Getting started 3

What did we just do? We installed and activated an isolated Python environment in a
directory named ".venv".

Why did we do that? To ensure that any packages we install do not interfere with your
other programs, and to ensure that we are all using similar versions of all necessary
packages for this tutorial.

What were some of those packages? `pip freeze` will show them all, e.g., sbpy v0.3.0,
astropy v5.1, astroquery v0.4.6, numpy 1.22, scipy 1.8, matplotlib 3.5, etc.

Anything else I should be aware of? This environment takes up ~0.5 GB of space, so
you may want to remove the ".venv" directory in the future.

Getting started 4

Start up JupyterLab:

$ jupyter-lab

Switch to your web browser and start a "Python 3 (ipykernel)". Verify that sbpy is there
and ready to go:

Getting started: an alternative

Start a new notebook with the RubinSim v0.9 kernel on the SSSC JupyterHub.

sbpy basics

All tutorial code is available at:

https://github.com/NASA-Planetary-Science/sbpy-tutorial

and on the SSSC JupyterHub at:

~shared/sbpy-tutorial/sprint-2022

The code blocks in this presentation are snippets from LSST SSSC 2022 tutorial notebooks.

It is recommended to follow the presentation and/or these slides, and refer to the notebooks as needed.
Slides also have links to online documentation for reference.

https://github.com/NASA-Planetary-Science/sbpy-tutorial

Data containers
sbpy data containers are designed around common needs for solar system astronomy.
They encapsulate:

● Ephemerides (sky coordinates, heliocentric distance, etc.)
● Orbits (semi-major axis, time of perihelion, etc.)
● Physical properties (radius, albedo, etc.)
● Obs (astrometry, photometry)

Appropriate units are enforced on all physical quantities (e.g., units of length for radius),
and I/O convenience methods are provided for some major online tools and openorb.

The containers are essentially data tables with column name aliases, e.g., heliocentric
distance may be accessed via "r" or "rh".

https://sbpy.readthedocs.io/en/stable/sbpy/data/index.html

https://sbpy.readthedocs.io/en/stable/sbpy/data/index.html

Ephemerides with Ephem
1. Create an ephemeris object from a dictionary

of quantities: rh, delta, and phase:
sbpy.data.Ephem.from_dict

2. Use the Minor Planet Center's Ephemeris
Service to generate an ephemeris for comet
2P/Encke for the next year: Ephem.from_mpc

3. Display the results in the notebook:
Ephem.table.show_in_notebook

import astropy.units as u

from astropy.time import Time

from sbpy.data import Ephem

epochs = {'start': Time('2022-06-22'),

 'stop': Time('2023-06-22'),

 'step': 10 * u.day}

eph = Ephem.from_mpc('2P',

 epochs=epochs,

 location='I11')

https://sbpy.readthedocs.io/en/stable/sbpy/data/ephem.html

https://sbpy.readthedocs.io/en/stable/sbpy/data/ephem.html

Orbits and OpenOrb
1. Use the Minor Planet Center to get

the orbit of comet 2P/Encke:
sbpy.data.Orbit.from_mpc

2. Convert the orbit into an
ephemeris over the next year:
Ephem.from_oo

import astropy.units as u

from astropy.time import Time

from sbpy.data import Orbit, Ephem

orbit = Orbit.from_mpc('2P')

orbit['targetname'] = '2P'

orbit['orbtype'] = 'COM'

orbit['H'] = 15 * u.mag

orbit['G'] = 0.15

epochs = Time('2026-01-01') + np.arange(365, step=30) * u.day

eph = Ephem.from_oo(orbit, epochs=epochs, location='I11')

https://sbpy.readthedocs.io/en/stable/sbpy/data/orbit.html

https://sbpy.readthedocs.io/en/stable/sbpy/data/orbit.html

Activities
1. Get the ephemeris of your favorite comet or

asteroid from JPL Horizons or the IMCCE's
Miriade: Ephem.from_horizons,
Ephem.from_miriade

2. Get the physical properties of an asteroid
or three from the JPL Small-Bodies
Database: sbpy.data.Phys.from_sbdb

We will use the observational data object,
sbpy.data.Obs, later in this tutorial.

print(phys['targetname', 'H', 'D', 'albedo'])

<QTable length=3>

 targetname H diameter albedo

 mag km

 str26 float64 float64 float64

-------------------------- ------- -------- -------

 1 Ceres (A801 AA) 3.56 939.4 0.09

 12893 Mommert (1998 QS55) 13.98 5.214 0.179

3552 Don Quixote (1983 SA) 12.96 19.0 0.03

https://sbpy.readthedocs.io/en/stable/sbpy/data/phys.html

https://sbpy.readthedocs.io/en/stable/sbpy/data/phys.html

Photometric calibration

sbpy photometric calibrations are based on spectra of the Sun and Vega, precomputed
filter zeropoints, and relevant bandpass wavelengths.

Magnitudes and physical units
1. Convert an AB magnitude to/from linear

units: astropy.units.ABmag,
astropy.units.spectral_density

2. Convert a Vega magnitude into a
physical unit: sbpy.units.VEGAmag,
sbpy.units.spectral_density_vega

import astropy.units as u

m = 18 * u.ABmag

fnu = m.to('W/(m2 Hz)')

flam = m.to('W/(m2 um)', u.spectral_density(550 * u.nm))

https://docs.astropy.org/en/stable/units/equivalencies.html
https://sbpy.readthedocs.io/en/stable/sbpy/units.html#vega-magnitudes

https://docs.astropy.org/en/stable/units/equivalencies.html
https://sbpy.readthedocs.io/en/stable/sbpy/units.html#vega-magnitudes

Bandpasses
1. Plot the PS1 r-band bandpass:

sbpy.photometry.bandpass,
SpectralElement.plot

2. Convert an AB magnitude measured in
the PS1 r-band into a linear unit: ABmag,
spectral_density, SpectralElement.pivot

import astropy.units as u

m = 18 * u.ABmag

fnu = m.to('W/(m2 Hz)')

flam = m.to('W/(m2 um)', u.spectral_density(550 * u.nm))

https://sbpy.readthedocs.io/en/stable/sbpy/photometry.html#filter-bandpasses
https://synphot.readthedocs.io/en/latest/synphot/bandpass.html

https://sbpy.readthedocs.io/en/stable/sbpy/photometry.html#filter-bandpasses
https://synphot.readthedocs.io/en/latest/synphot/bandpass.html

Solar spectrum
1. Observe the Sun through in a V-band

filter: bandpass,
sbpy.calib.Sun.from_default,
Sun.observe_bandpass

2. Plot the spectrum of the Sun, the
brightness of the Sun measured in (1),
and the PS1 r-band throughput:
Sun.wave, Sun.fluxd,
SpectralElement.waveset,
SpectralElement()

3. Get the apparent magnitude of the Sun
in the LSST r-band filter, as calculated by
Willmer (2018): sbpy.calib.solar_fluxd,
Sun.observe_filter_name

from sbpy.calib import Sun

from sbpy.photometry import bandpass

sun = Sun.from_default()

V = bandpass('Johnson V')

lambda_eff, fluxd = sun.observe_bandpass(V)

https://sbpy.readthedocs.io/en/stable/sbpy/calib.html#observe-the-sun

https://sbpy.readthedocs.io/en/stable/sbpy/calib.html#observe-the-sun

Activities
1. Plot a spectrum of the Sun, and compare it

to the same spectrum re-binned to a
spectral resolution of 25: Sun.observe

2. Convert an absolute magnitude of 12.436
ABmag in the LSST r-band filter to a
cross-sectional area assuming a
reflectance of 4% per steradian:
astropy.units.Quantity.to,
sbpy.units.reflectance

Surfaces!

Disk integrated phase functions
1. Get all reported r-band photometry of (90)

Antiope from ZTF, and ephemeris data for each
observation: sbpy.data.Obs.from_mpc,
Orbit.from_horizons, Ephem.from_oo

2. Convert the photometry to absolute
magnitude and fit the data with the H, G
photometric model:
astropy.modeling.fitting.LevMarLSQFitter,
sbpy.photometry.HG

from astropy.time import Time

from sbpy.data import Obs, Orbit, Ephem

phot = Obs.from_mpc('90')

ztf = ((phot['observatory'] == 'I41')

 * (phot['epoch'] > Time('2017-10-15')))

r = phot['band'] == 'r'

phot = phot[ztf * r]

orbit = Orbit.from_horizons('90')

eph = Ephem.from_oo(orbit, location='I41',

 epochs=phot['epoch'])

https://sbpy.readthedocs.io/en/stable/sbpy/data/obs.html
https://sbpy.readthedocs.io/en/stable/sbpy/photometry.html#disk-integrated-phase-function-models

https://docs.astropy.org/en/stable/modeling/index.html

https://sbpy.readthedocs.io/en/stable/sbpy/data/obs.html
https://sbpy.readthedocs.io/en/stable/sbpy/photometry.html#disk-integrated-phase-function-models
https://docs.astropy.org/en/stable/modeling/index.html

Activities
Fit the (90) Antiope data with the other
photometric models and compare the results:
HG1G2, HG12, HG1G2_Pen16

Dust!

Cometary coma dust
1. Create Afρ and εfρ objects:

sbpy.activity.dust.Afrho,
sbpy.activity.dust.Efrho

2. Convert the Afρ object into flux density,
using the LSST r-band filter, a 5" radius
aperture, and the observational
circumstances of your favorite comet:
Afrho.to_fluxd, Ephem.from_mpc

3. Convert that flux density back to the Afρ
quantity: Afrho.from_fluxd

4. Plot the 0.3 to 30 µm spectrum of a comet
with the Afρ and εfρ objects: Afrho.to_fluxd,
Efrho.to_fluxd

import astropy.units as u

from sbpy.data import Ephem

from sbpy.activity import Afrho

afrho = Afrho(1000 * u.cm)

eph = Ephem.from_mpc('C/2017 K2')

aper = 5 * u.arcsec

m = afrho.to_fluxd('LSST r', aper, eph, unit=u.ABmag)

https://sbpy.readthedocs.io/en/stable/sbpy/activity/dust.html

https://sbpy.readthedocs.io/en/stable/sbpy/activity/dust.html

Activities
1. Account for phase effect in the previous

coma spectrum: Afrho.to_fluxd,
sbpy.activity.dust.phase_HalleyMarcus

2. Redden the scattered light from the coma
by a slope of 10%/100 nm measured at
616.5 nm: sbpy.units.hundred_nm,
sbpy.spectroscopy.SpectralGradient,
sbpy.spectroscopy.Reddening

https://sbpy.readthedocs.io/en/stable/sbpy/activity/dust.html#phase-angles-and-functions
https://sbpy.readthedocs.io/en/stable/sbpy/spectroscopy/index.html

wave = np.linspace(0.3, 1.0) * u.um

print(reddener(wave))

[0.6835 0.69778571 0.71207143 0.72635714 0.74064286 0.75492857

 0.76921429 0.7835 0.79778571 0.81207143 0.82635714 0.84064286

 0.85492857 0.86921429 0.8835 0.89778571 0.91207143 0.92635714

 0.94064286 0.95492857 0.96921429 0.9835 0.99778571 1.01207143

 1.02635714 1.04064286 1.05492857 1.06921429 1.0835 1.09778571

 1.11207143 1.12635714 1.14064286 1.15492857 1.16921429 1.1835

 1.19778571 1.21207143 1.22635714 1.24064286 1.25492857 1.26921429

 1.2835 1.29778571 1.31207143 1.32635714 1.34064286 1.35492857

 1.36921429 1.3835]

https://sbpy.readthedocs.io/en/stable/sbpy/activity/dust.html#phase-angles-and-functions
https://sbpy.readthedocs.io/en/stable/sbpy/spectroscopy/index.html

Gas!

Cometary coma gas
1. Use the Haser (1957) model to compute

the total number of water molecules in a
coma at 1 au from the Sun, as observed
with a 10,000 km radius aperture:
sbpy.activity.gas.photo_lengthscale,
sbpy.activity.gas.Haser

2. Repeat the calculation, but instead
observe with a narrow slit of dimensions
1"×10":
sbpy.activity.RectangularAperture,
Ephem.from_mpc

import astropy.units as u

from sbpy.activity.gas import Haser, photo_lengthscale

Q = 1e28 / u.s

v = 800 * u.m / u.s

parent = photo_lengthscale('H2O')

water = Haser(Q, v, parent)

rho = 1e4 * u.km

print(water.total_number(rho))

https://sbpy.readthedocs.io/en/stable/sbpy/activity/gas.html
https://sbpy.readthedocs.io/en/stable/sbpy/activity/index.html#apertures

https://sbpy.readthedocs.io/en/stable/sbpy/activity/gas.html
https://sbpy.readthedocs.io/en/stable/sbpy/activity/index.html#apertures

Activities
1. Get the photolysis lengthscale for OH and

use the Haser model to calculate the total
number of OH molecules in the 1"×10" slit:
photo_lengthscale, Haser

2. Estimate the total luminosity of the OH 0-0
band given the results of (1):
fluorescence_band_strength

3. Repeat with the Vectorial model of Festou
(1981): sbpy.activity.gas.VectorialModel

https://sbpy.readthedocs.io/en/stable/sbpy/activity/gas.html#fluorescence
https://sbpy.readthedocs.io/en/stable/sbpy/activity/gas.html#vectorial-model

https://sbpy.readthedocs.io/en/stable/sbpy/activity/gas.html#fluorescence
https://sbpy.readthedocs.io/en/stable/sbpy/activity/gas.html#vectorial-model

Feedback, Questions, Help

Help

- We have a channel in the astropy slack workspace: Find #sbpy at astropy.slack.com
- Find me in the SSSC or LSST slack workspaces.
- Email the developers, Jian-Yang Li and me: msk@astro.umd.edu and jyli@psi.edu

Problems, bugs, proposed enhancements, etc.

- Open an issue at: https://github.com/NASA-Planetary-Science/sbpy/issues

mailto:msk@astro.umd.edu
mailto:jyli@psi.edu
https://github.com/NASA-Planetary-Science/sbpy/issues

